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ABSTRACT

Adequate prediction of a response variable using a multiple linear

regression model is shown in this article to be related to the presence

of multicollinearities among the predictor variables. If strong multi—

collinearities are present in the data, this information can be used to

determine when prediction is likely to be accurate. A region of predic-

tion, R, is proposed as a guide for prediction purposes. This region is

related to a prediction interval when the matrix of predictor variables

is of full column rank , but it can also be used when the sample is under-

sized . The Gorman—Toman (1966) ten variable data is used to illustrate

the effectiveness of the region

~~ 
-
~~ 1. INTRODUCTION
h

Prediction of future observations is one of the primary uses of an

estimated linear regression model. Although a large number of papers and

books have been written on the analysis of regression data, the emphasis

in the literature is heavily weighted toward problems of model building

•~~~~ ~~
- and estimation of model parameters , and not on recommendations for using

prediction equations. While these problems are all related , they do not

necessarily place the same demands on the estimated model.

*This research was sponsored in part by the Air Force Office of Scientific
Research , Air Force Systems Command , USAF , under Grant No. AFOSR—75-2871.1
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Currently much of the statistical literature on linear regression is

focussing on properties of biased regression estimators. Notable articles
0 

include James and Stein (1961), Hoerl and Kennard (1970), Marquardt (1970) ,

Lindley and Smith (1972), Hawkins (1973), and Webster , Gunst, and Mason

(1974). Biased estimation is receiving such prominence due to the reali-

zation that inulticollinearity among the predictor variables (defined in

Section 2) tends to severely distort the least squares estimates of the

regression parameters. This in turn can result in poor prediction of

future responses. Subset selection procedures likewise are not immune to

distortion in the presence of multicollinear data.

Underlying this need for good parameter estimates is the assumption

that the fitted model is to be used to predict over a wide region of in—

terest of the predictor variables, perhaps an entire rectangular region

defined by the extreme values observed on each predictor variable. This

may be unduly stringent assumption as Hocking (1976) discusses from a

variable selection vie~~oint. In other words, frequently it is not

necessary to predict over such a wide region . When this is so, accurate

predictions may be possible despite uncertainties about the goodness of

• 
individual parameter estimates.

The purpose of this paper is to better identify when prediction is

likely to be accurate with multicollinear data . Specifically, this paper

was stimulated by three problems noticed by Owen and Reynolds (1968) in

their development of a prediction equation for estimatin; ~mgineering man- 
- 

— _____

hours for proposed aircraft programs: PT
1) they decided to include “no more than 12” predictor variables

from a total of about 60 possible ones since only 23 observations

- - ~~~~~~~~~~~~~~~~ ~~~~ 0
0~~~~ 0~0~~~___  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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on the response variable (engineering man—hours) were available;

2) a backward elimination (Draper and Smith (1966) , Chapter 6)

0 procedure was performed to further reduce the number of pre-

0 
dictor variables to eliminate “the possibility of the

accidental deletion of a significant variable due to its

0 interaction with other variables” ; and 
-

3) the authors concluded that “some limits of extrapolation for

formulas should be a primary objective of future studies.”

We will address each of these problems in subsequent sections, not with

• the goal of providing final, def initive solutions to them , but rather to

show how each affects the estimation of the regression parameters and the

use of the resulting prediction equation . We do not intend to argue that 
0

any particular estimator is the best one to use with multicollinear data.

We will, however , point out some advantages of using a principal component

estimator to obtain a prediction equation.

2. LEAST SQUARE S PREDICTION EQUATIONS

In this section we will examine problems 2 ) and 3) of Owen and Reynolds

(1968) which were listed in the previous section . Suppose the assumed lin-

ear regression model is written as

• Y = ~~ 0
1 + X ~~

+ c, (1)

where Y is an (nX]) vector of observations on the response (dependent)

variable, 1 is an (nxl) vector of ones, X = [X
1
,X
2
,...,X j is an (nxp)

full column rank matrix of predictor (independent) variables, is an

unknown constant, ~ is a (pxl) vector of unknown regression parameters,

and ~ is an (nxl) vector of unobservable random error terms with

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
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c ~ N ( O ,a
21) . For simplicity 1 we assume that the elements of X . are

standardized so that X 1  = 0 and X~X . = 1 for j  = l,2,...,p. Finally,

model (1) is assumed to adequately represent the response variable although

some of the predictor variables may not be needed for adequate prediction .

The latter two problems cited by Owen and Reynolds result from inade-

quacies in the data used to estimate the model parameters; in particular,

from multicollinearities in the data. A multicollinearity can be defined

as a linear combination of the columns of X that is nearly zero. This im-

plies that X’X is nearly singular. A multicollinearity is not necessarily

due to some variables being redundant in the specification of the model ,

but they may be redundant for the data collected.

- Redundant model variables , those variables that will be redundant

for all samples of data, can and should be deleted from the model since

they serve only to inflate the variance of predicted responses (see, e.g.,

Hocking (1976)). If the redundancy is inherent only in the particular

data sampled, it is dangerous to remove them from the predictor since

the estimated model may then be biased when future responses are predicted .

Yet multicolljnearjties tend to cause the deletion of one or more of the

-

• multicollinear variables merely because they are involved in multicollin-

earities, not because they are worthless predictor variables.

To see this latter point, denote the eigenvalue s of X ’ X  by 9.
1

>2
~2

>

...>R. and the corresponding eigenvectors 
~~ Y1’Y 2 ’ - ~~ ’Y~ 

If there are

one or more multicollinearities among the columns of X , one or more of the -‘

eigenvalues of X IX will be nearly zero. For eigenvalues that are near

zero, multicollinearities can be identified by noting that

_ _ _  
~~~_-—-- .• 0~~~~~~~~~~~~
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p
V ! X ’XV . = £ .  ~ 0 -

~~~~ V . X. ~ 0. (2)
— J — J ~ i=l ~~~~ —

Equation (2) shows that the eigenvector V . corresponding to a small eigen-

value i . provides the coefficients for the linear combination of the col-

umns of X causing a multicollinearity . Naturally , the larger elements in

V . identify the predictor variables most strongly multicollinear. Mason,

et al. (1975) contains a more complete discussion of multicollinearities

and the problems associated with them.

The least squares estimator of B for the model specified by (1) is

= (X’ X ) 1
X ’Y.

The variances and covariances of the 
~~~

. can be found f rom

— 1 2  2
Var [~~) = ( X ’ X )  o ~ ~~. V . V~~ . (3)

j=l ~

From (3) we can see that small eigenvalues in X ’X will result in large

variances and covariances for estimated jar~1r~2ters of variables involved

in multicollinear ities (those with la rge  V . .  values in ( 2 ) ) .
3~3

When attempting to reduce the number of variables in the prediction

equation , the t statistic commonly used to test H
~
: 5 .  0 is

t = 8./ (c.. MSE)
112 , (4 )

where c~~ is the jth diagonal element of (X’X) 1 
and MSE is the estimate

of a computed from the full model (1). Since the C . . values of variables

involved in multicollinearities tend to be large due to the small 
~~~~

. in

(3), the t statistics corresponding to these variables tend to be small.

This accounts for the tendency for variables to be deleted by some computer

programs because of their “interaction with other variables”.

-— -~~~~~~~~~ - - _ _ -  —_ — 
— • . - —.  -~_ . ~0 ~~~~~~~~~~~ —_ ~~~— — - -
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Contrary to Owen and Reynold’s supposition, backward elimination 
0

also suffers from this problem. Backward elimination deletes the variable

with the smallest t statistic at each stage. Since multicollinear varia-

bles tend to have small t statistics, at least one multicollinear predic-

tor variable is likely to be deleted from the model. See Gunst, et al.

(1976) for an illustration of this property .

The problem of eliminating important predictor variables, problem

2) of the previous section , is thus directly related to multicollinearities

in the data. Multicollinearities in the data used to estimate S may affect

prediction even if all the predictor variables are used in the prediction

equation . Write the least squares prediction equation as

(5)

where = 2 and u is a vector of values of the p predictor values which

are standardized as in (1).

Since ~ generally estimates well, (5) will be an adequate predic-

tor of the response if

f for all values of u in some region of interest. Now u ’5 is an unbiased

estimator of u ’B , wi th variance

Var[u ’~~] = 
2 
u’(X’X) 1

u

-l 2
= a ~ 9. . (u’V .) . (6)

j=l ~ 
— — J

0 It can be seen from (6) that Var[u ’51 will be unacceptably large for many
I ~~ — —

points ~ if one or more of the are sufficiently small , or some of the

u’V . are large. 
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A commonly known but infrequently used means of estimating the

precision of prediction is by forming a lOO (1-ct)% prediction interval

for the point U :

‘1 — t~,(c~/2)•s < Y < Y + t (a/2) s, (7)

where t( c~/2) is the upper lOO(cL/2)% critical point of the t distribution

with 
~~ 

= n—p—l degrees of freedom , and s = [(l+n
1
+u ’ ( X ’X ) 1

urMSEL1”2.
p

The width of this prediction interval depends on 1. (u’V ) 2 
as in (6).

j=l~~
Both (6) and (7) essentially depend on how small u ’V . is relative to

• 
• 

~~~~~ 
If 9~. is extremely small, then u ’V . must also be small or prediction

will be poor. These considerations suggest the definition of a “region

k of predictability” wherein prediction would be expected to be suitably

accurate. One such region can be defined as

V R = {u: u ’vj<c ., j=l,... ,p, and a .<u <b . }, (8)— — — 1 i i

where a. and b . are the minimum and maximum standardized values of the ith
1 1

predictor variable , i.e., a. = min t  X
k
.; k=l,2,...,n} and b. =

max{X
~K
.; k=l,2,...,n} for i=1 ,2,...,p.

~No methods for choosing the c . are
J

1/2(1) c .  = 9 . .  , or

(ii) c . = max(lw~
V . 

~
, i=1 ,2 ,. .. ,n}, where w~ is the ith row of X .J 1J  —i

Method (i) insures that 9.
1
(u’V .)

2 
< 1, while (ii) bounds u ’V . by the

•‘ 
~~• 

J — — J  — — — J

largest of the values for the points w~ used to estimate B. Each of

these methods can be interpreted as requiring that the prediction equation

~~~~~~ only be used in regions for which data has been collected ; i.e., the re-

• quireinents (i) and (ii) limit extrapolation . If one wishes to predict

outside R, the predicted values must be cautiously used , but this does

indicate a partial response to point 3) of Owen and Reynolds.

0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~_~~~~~~~~~~~~~ 0~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— ••_ ~~~~~~~ 0~•~ 0~
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By far the worst prediction will occur for points which have values

of ~u ’V~~ that are large for small values of ~~~~~
. Suppose r multicollin—

earities have been detected by a careful examination of the 9.. and

as well as possibly other procedures such as investigating the “correla-

tion” matrix, XIX , or the variance inflation factors (Marquardt (1970) ,

Marquardt and Snee (1975)). The c ., a., and b . could then be relaxed in
J i 1

(8) for the first (p—r) directions u’V .,, j=l,2,. ..,p—r . In these direc-

tions extrapolation could be allowed with the knowledge that (7) would

still provide reasonable bounds . These ideas will become even more im-

portant with the discussion of problem 1) in Section 3.

Note that R is based solely on sample information , information avail-

able to the data analyst at the time he wishes to make a prediction. If

(8) is not satisfied , prediction may——and sometimes will--be accurate

since (5) is an unbiased estimator of + u’B . Prediction for u £ P.

provides the assurance that the prediction equation is suitably precise.

If variable selection procedures are used to reduce the number of

variables in the model , prediction will be adequate provided (2) holds

for the points at which prediction is desirEd . This implies that u ’V . ~ 0

for these new points. But this restriction is again in the form of a - •

region (8) pith the c . chosen suitably small for j  = p—r+l ,p—r+2 ,. .. ,p.

Thus if a region of predictability of the form (8) is constructed , least

squares estimation and variable selection techniques will yield prediction

equations which are accurate despite the multicollinearities in the data

used to estimate the parameters. Outside this region the predictor can-

not be expected to perform well due to large variances of the predictor

• or bias due to erroneously deleting important predictor variables.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. A PRINCIPAL COMPONENT PREDICTOR FOR UNDERSIZED SAMPLES

Owen and Reynold’s first problem, having to use only about 12 of 60

possible predictor variables in their initial models, results from fewer 7

observations than predictor variables being available for the analysis.

The full rank analysis of (1) using least squares requires that n>p, a

requirement not satisfied by their data.

There is a wide range of model-building problems that could be ad-

dressed at this point concerning specification of model (1), but it is

- - not within the scope of this paper to do so. We merely wish to raise the

obvious questions regarding the deletion of marLy potentially valuable pre—

dictor variables (i) subjectively , (ii) on the basis of a partial analysis

of the response and a subset of the predictor variables, or (iii) by using

a stepwise procedure such as forward selection (see Mantel (1970) for some

objections to this technique for full rank models). One acceptable means

of deleting variables prior to an analysis of the complete (assumed correct)

model (1) is if there are model redundancies.

Rather than demanding a full rank analysis , generalized inverse esti-

mators offer another option. The generalized inverse solution is generally

presented in a discussion of singular X matrices (as in designed experi—

rnents) for which n>p (see, e.g., Rao (1965 ) ,  Searle (1971) ,  or Theil (1971)).

While the existence of this estimator of ~ and its estimability characteris—

tics are well—known , its potential use with undersized samples (n<p) has

not been fully explored . An exception to this statement is in the economic

literature of simultaneous equations systems (Fisher and Wadycki (1971),

Khazzoom (1975), Swamy and Holmes (1971)).

-

~

- 0~~ _ _ _
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The particular generalized inverse estimator we will examine in this

section is referred to in the literature (e.g., ~1assy (1965), Marquardt

(1970)) as a principal components estimator. If n>p and X has rank p-r

(corresponding to 9.
p—r+l 9.p—r+2 

= = 0 ) ,  the principal component

estima tor is defined to be

= (X’ X ) X ’Y = V
L
L
L
1
V
~

X ’Y  (9 )

where the generalized inverse of X ’X is (X ’X) = V
L

L
L
1

V
~~ 

V
L 

= 

~~l
’
~~2
’”’

~p—r~
’ and L

L 
= dia~~(9.1ii2

i...~ 9.p_~ ) . It is of ten demonstrated that (9)

is the least squares estimator of ~ subject to the constraints V~ S 
= 0 ,

where V
0 

=

With undersized samples (i.e., n<p) there are typically s very small

eigenvalues of X ’X in addition to the r zero ones. We propose, therefore ,

a generalization of (9) for undersized samples which is of the same form

but with V = [V , V , . . . , V  I .  Again , it can be shown that this is
L —l — 2 —p— s—r

the least squares estimator of ~ subject to the constraints V
~
S = 0 and

- 0 V~~ = 0, where V = (V ,V , . . . , V ] .  
• 0~

s — s —p—s—r+l —p—s—r+2 —p—r

Our rationale for using this estimator of 5 stems from a different

justification than the parameter constra ints given above. This justifica— J

tion stresses the use of the actual information provided by the matrix of

predictor variables and , as we shall see, again y ields guidel ines for the

use of the resulting predictor .

Let H be an (nxn) matrix of eigenvectors of XX ’ , partitioned as H =

(H
L
: H :  11o1

~ 
H
L 

is nx (p—s—r) and contains the eigenvectors of XX’ cor—

responding to the eigenvalues in L
L = ~~~~~~~~~~~~~~~~~~~~ H

5 is (nx s) and

~:I:1I:1I1II1I: II:IIIII I1II~~I111I
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and H
0 contains the eigenvector s correspond-

ing to the n—p+r zero eigenvalues. For undersized samples , r , the number

of zero latent roots of X’X , is generally equal to p— (n—1), so tha t H
0

contains only one vector. Then we can write (e.g., Good (1969))

1/2 1/2
X = H ~‘V’ + H L V 1 + i-I L V t

0 0  s s  s L L  L 
0

= X
0
+ X + X ,  (10)

where 4 is an (n—p+r)X r matrix of zeros and X
0 

= H 0
t~V~~, etc . Since X

0 
=

~ and X ~ (since L contains small e igenvalues) ,  we see from (10) that

X 
~ 

XJ , . This emphasizes the point that the entire space of predictor

variables has not been sampled , only a subspace that is pr imar i ly  spanned

by the eigenvectors in V
L

. Insert ing X
L in place of X in ( 1) and obtain-

ing the principal component solution to the no rmal equations y ields (9)

with V
L 

defined as above . This argument can also be used to j u s t i f y  the

use of a principal component estimator for the full rank model if multi—

collinearities are present since , then, X = X + X
L 

% X
L
.

The principal component prediction equation for undersized samç les ,

(11)

is biased. The bias of (11) can be written

8( Y )  = u ’B - u ’ (X
~

X
L

) X
~

XB

= u ’13 - U V L
V

LB I  ( 12)

- 
- and the variance of ~~~~~ ~~~

Var [u ’
~~] 

= u~ (X~ X
L

) u G 2

2= a 
~ ~~~

. (u ’ V . )  . (13)
j=l  ~ 

— — J

-~~ -— — — -_  —- —~- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ------. -

~~~ 
----- ~0 ~~~~~~ ~~~~~~~~~~~~~~ —-- ~0
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The variance term (13) does not s u f f e r  from having small eigenvalues as

does (6), but (12) indicates that the predictor is generally biased. Note

that if V~ u = 0 and V ’u = 0, u’B = u ’ V
LVLB , and (11) indeed turns out tr 0

be unbiased. This again reflects the fact that prediction should be ac—

curate if we restrict the region of predictability to poihts in a general

region that was actually sampled.

This discussion suggests a region similar to (8)  w i th in  which predic-

tion could be proposed , but outside of which prediction should not be

recommended . Extrapolation can also be allowed in the space spanned by

V
L
. An evaluation of these recommendations is the subject of the next

section.

4. AN ASSESSMENT OF R

In this section an example is presented to i l lus t ra te  the potential

benefits of using a region such as R as a guide in predicting. Again , a

prediction interval of the form (7) is preferable to P. when X is of full

column rank and a sufficient number of observations are available to oh- 0 
-

tam a good estimate of ~
2 

Otherwise , R can sti l l  be e f f ectively used,

as is now demonstrated.

The example concerns the ten variable data of Gorman and Toman (1966).

A detailed analysis of this da ta, includ ing a listing of the raw data , is

given in Daniel and Wood (1971). Two analyses of this data are to be per—

formed here : (i) a full rank analysis in which the first 15 of the n 3 6

data points are used to obtain a predictor, and (ii) an undersized sample

analysis in which only the first 10 of the 36 data points are used . Each

predictor is then used to predict the remaining observations.

__________________ ____________________ _____
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— With the ful l  rank analysis, the smallest latent root of the stan—

dardized X ’ X matrix is = 0.0062, with corresponding latent vector:

= (.322, — .080, — .172 , — .106, — .309

• .787, .308, .050, — .029, .191).

- From the discussion of Section 2, both (7) and (8) suggest that prediction

should not be attempted unless 
~
‘Y1o is small. (For simplicity and ease

of discussion, we are only considering one small latent root in this

analysis. Since £
9 

= 0.019, we may wish to consider the magnitude of

- u V
9 
as well). Using least squares, a predic tor of the form (5)  was

constructed.

Figure 1 is a plot of J~ . —~j  ( labeled “RESIDUAL” ) versus

( labeled “VS PRIME U ” )  for the 36—15 = 21 data points not used to estimate

the parameters in the prediction equation. The trend is clear: the mag-

nitude of the residuals increases with the magnitude of 
~~~~~~~~~~~~~ 

While

some moderate—sized residuals do occur with sma]l magnitudes of

0 there are no small residuals for large magnitudes of u ’V
10

.

Also evident from Figure 1 is the need to explore possible bounds on

O 
The two suggested in Section 2 turn out to be

and 
( i)  I~~!lO

I 9.
1/2 

= 0.079

• (~-~-)  I~~Y3~ I < ma x { 1w 0 V
10 1} = 0.047.

• 
While these bounds may be extremely effective for new values of u which

satisfy (i) or (ii), the smallest value of I~~y1o l for the 21 addi tional

- points is Iu ’v 10 1 = 0.110. Nevertheless , the trend in Figure 1 indicates

that, at least qualitatively , a region such as P. can be effective in as—

0 
sessing when prediction should not be attempted .
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FIGURE 1. RESIDUALS OF GORMAN-TOMAN DATA BASED ON

I FULL RANK ANALY SIS,

0 l
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For the undersized sample, = 0 and £
9 

= 0.0104. The correspond-

ing latent vectors are

V4 = (.221 , .046, — .131, .064 , .562

— .645, — .092, .148, .219, — .342),
c- nd

~io 
(.661, -.085, — .367, — .059, .088

.495, .290, .188, .160, — .139).

- 
- The latent vectors corresponding to the B remaining latent vectors were

used to estimate ~ as in (9) and then form the prediction equation in (11).

Figure 2 is a plot of the residuals, ~~~~~~ , of the remaining 36—10 26

data points (with a ‘+“ indicating 
~

Y
~~

— ’i’
~j  

< 0 .75 , a “X” indicating 0.75 <

• 
J Y .—Y .~ < 1.50, and “ 0 ‘ indicating 1.50 < } Y. -Y . I )  as a function of Iu ’v

1 1 —  1 1 — — 9

(labeled “VS PRIflE U”) and l
~~~~lO~ 

(labeled “JO PRIME U ” ) .  Again the trend

is clear : smaller residuals occur predominantly with smaller values of

both ~U V ~~ and

5. SUMMARY

The intent of this paper is to focus attention on an aspect of regres-

sion analysis that is often overlooked when the resulting prediction equa-

tion is employed. Regardless of the sample size used to obtain estimates

of model parameters (and particularly when the sample size is small), esti-

mation is highly inaccurate outside a region generally defined by (8).

Yet regions of this form are always available to the data analyst and can

be very valuable as guides in predicting . The Gorman-Toman data illustrates

that both in the full rank situation and the undersized sample case, a re-

gion R formed by considering U’V . for latent vectors V~ corresponding to

zero or small latent roots of X ’X was effective in identifying when
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prediction was likely to be inadequate . Further work in this area should

concentrate on refining R; in particular, developing reasonable bounds,

c., for (8) based on the information in X.
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